
ADVANCING NANOPORE SQUIGGLE INTERPRETATION THROUGH

SQUIDBASE DATA CENTRALISATION AND ALGORITHMIC BENCHMARKING

Laura Raes, Wim L. Cuypers, Halil Ceylan, Eline Turcksin, Julia M. Gauglitz, Wout Bittremieux, Kris Laukens

potential of nanopore squiggle analysis

two promising underdeveloped applications

computational target gene enrichment

Nanopore sequencing allows for fully computational target enrichment, requiring no additional lab steps beyond standard library preparation. By analyzing raw signals in real-time, undesired sequences can be **selectively ejected from the pore**, allowing more relevant DNA strands to be sequenced.

This enabled for example the genotyping of all known neuropathogenic STRs in a single assay¹.

ONT's sequencing software includes built-in adaptive sampling based on basecalling and subsequent sequence alignment. Its performance is limited by the high computational demands of this two-step process.

real-time portable pathogen detection

Due to its portability and minimal laboratory requirements, nanopore sequencing is well-suited for **disease outbreak surveillance** and **antimicrobial resistance monitoring**.

For example, a recent study has demonstrated the feasibility of whole-genome sequencing of the malaria-causing Plasmodium parasite from patient blood samples using nanopore sequencing, without the need for wet-lab enrichment².

However, the potential of portable nanopore sequencing remains underutilized due to the reliance on GPU-intensive basecalling.

our contributions

issue

lack of squiggle data

Traditional repositories (e.g. Sequence Read Archive) are **not well-suited** for raw nanopore data:

- raw signal data is practically unfindable
- no nanopore-specific filtering options (e.g. pore model, chemistry)
- upload and download of squiggle data is cumbersome and inefficient

The absence of a centralized storage system for raw nanopore data **hinders**:

- researchers accessing the epigenetic data contained in raw signal data
- the development of new squiggle-space algorithms, particularly those based on machine learning
- transparency and reproducibility in data-driven scientific research

contribution

SquiDBase

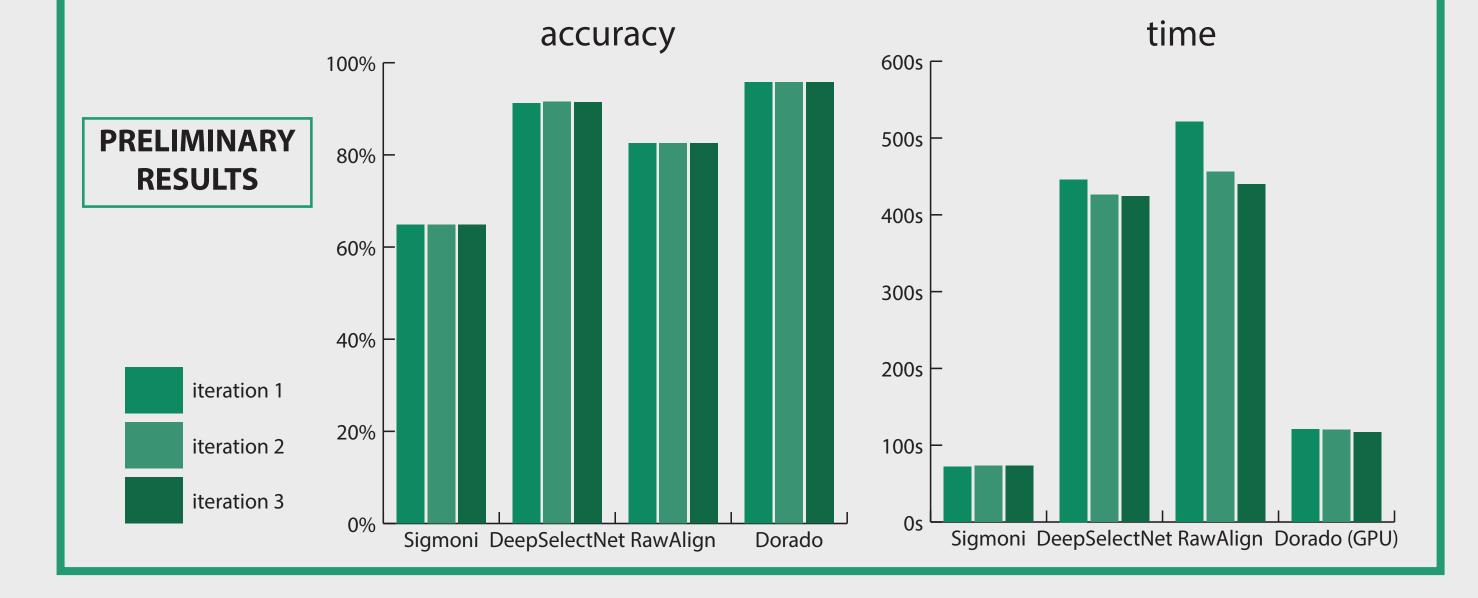
We developed SquiDBase, a curated database for data of microbial and viral origin.

- We included publicly available raw nanopore data generated with the legacy R9 nanopore, to support the development and benchmarking of squiggle-space algorithms.
- We generated and uploaded R10.4.1data for 60 viral strains and the malaria-causing parasite Plasmodium. This is especially important because of the lack of publicly available data generated with the new R10 nanopore.
- Since SquiDBase does not support human genomic data, a preprocessing pipeline for filtering out human reads is available.

SquiDBase is available at https://squidbase.org .

issue

lack of squiggle-space algorithms


Only a limited number of squiggle-space algorithms are available. The algorithms that do exist, remain largely untested outside of their original studies.

contribution

benchmarking of squiggle-space classification algorithms

We initiated a benchmarking study to assess squiggle-space classification algorithms. Further development of these algorithms would benefit computational target gene enrichment as well as real-time portable pathogen detection. Our study is still ongoing, but preliminary results reveal both areas for improvement and significant potential.

The figure below compares the performance of three squiggle-space classification algorithms (Sigmoni³, DeepSelectNet⁴, and RawAlign⁵) on CPU for the binary classification of SARS-CoV-2 vs. Zymo R9 reads. Their performance is evaluated against ONT's current approach: basecalling and mapping with Dorado on GPU.

